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ABSTRACT Let 8 be an infinite-dimensional Kac-Moody
Lie algebra of one of the types DOl~, B(1, or D(P. These algebras
are characterized by the property that an elimination of any
endpoint of their Dynkin diagrams gives diagrams of types B,
or Di of classical orthogonal Lie algebras. We construct two
representations of a Lie algebra 8, which we call spinor repre-
sentations, following the analogy with the classical case. We
obtain that every spinor representation is either irreducible or
has two irreducible components. This provides us with an- ex-
plicit construction of fundamental representations of 8, two for
the type DVf1, three for B(, and four for D(}). We note the pro-
found connection of our construction with quantum field
theory-in particular, with fermion fields. Comparing the
character formulas of our representations with another con-
struction of the fundamental representations of Kac-Moody Lie
algebras of types A(9I), D})p, EP), we'obtain classical Jacobi
identities and addition formulas for elliptic 0-functions.

1. Affine Orthogonal Lie'Algebras. Let o(n) denote a clas-
sical orthogonal Lie algebra over the complex field C. We
consider a Cartan decomposition

o(21+2)=o(21+1)@e, _ C21+1,1=1,2,... [1.1]

Let us fix a subalgebra o(21) c o(21 + 1) and choose a Cartan
subalgebra b c o(21). Then b is a Cartan subalgebra of o(21 +
1) as well. The orthogonal algebras o(21 + 1) and o(21),l > 2, are
simple Lie algebras of types B1 and Di, respectively (see ref. 1).
Let R(B,) and R(D,) denote the root systems of pairs (o(21 +
1),b) and (o(2l),b), and S(B1) and S(D,) be corresponding bases
of root systems. Let (,) denote the bilinear symmetric invariant
form on o(21 + 2) normalized-in such a way that (a,a) =2, for
a e R(D,). We will identify o(21 + 2) with its dual with respect
to this form.

Let Qtt-1] be the algebra of Laurent polynomials in the
indeterminate t over C. We consider the following infinite-
dimensional Lie algebra (see ref. 2)

=o(21 + 2) @Ct,t-1] O Gcx Cd [1.2]
with Lie bracket defined by formulas

[X ® tm,Y @ tn] = [X,Y] ® tm+n + Sim-,nm(X,Y)c
[d,X @tm] = m * X 1 tm, [1.3]

in which X,Y e o(21 + 2), m,n e Z. and Cc is a one-dimen-
sional center. We also define a bilinear symmetric form on J,
setting

(X ® tm,y ® tn))= bm,-n (X,Y)

(c,d) = 1, (cc) = (dd) = 0, [1.4]
in which X,Y E o(21 + 2), m,n e Z7 and Cc Cd is orthogonal
to o(2l + 2) @ C[t,t-1]. One can check (see ref. 2) that (,) is an

invariant form, and we will identify j with a linear subspace
in its dual space with respect to this form.
Now we define three subalgebras in g as follows:

6(2)(21 + 2) = o(21 + 1) @ 61t2,t-2]
Xe e ® tct2,t-2]e Cc@ Cd

6(21 + 1) = o(21 + 1) @ 6t2,t-2]@ Cc$ Cd
5(2l) = o(21) @ cft2,t-2]eCcD Cd. [1.5]

We call these algebras affine orthogonal Lie algebras of rank
1+ 1. According to the classification of ref. 3 they belong to the
classes D +i, BY), and Di'), respectively. We will identify b @
1 with b and we call 9= t e Cc@ Cd Cartan subalgebra of
affine orthogonal Lie algebras in Eqs. 1.5. Again we denote by
R(Di?1), R(Bi')), and R(Di')) the corresponding root systems
with respect to , and we choose bases of root systems as follows:
S(Dt),1) = y(B1)u k-yj,'y is a short dominant root of R(B,),
S(B 1)) = 5(B,) u f{c&- "j21, 72 is a highest root of R(B1), S(Di1)
= S(D1) u f2c - s3j, y3 is a highest root of R(D,). The con-
struction of the corresponding Dynlkin diagrams is standard (see
ref. 3).
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The zero point of every Dynkin diagram corresponds to the
additional element of the base-i.e., to c - Y1, 2c - 72, or 2c
- yA. Let S = kxoal, . . .a,all be a base of the root system of
affine Lie algebra o. We denote by Q = jwo,o . coi the
fundamental weights, defined by the conditions 2(wc,a,)/
(ap,a) = bij, (w1,d) = 0, Qj = 0, 1, . . ., 1. Let X = nOcL)O + . . .
+ nlwl, in which no, . .. , ni e Z+; then, due to ref. 3, there
exists exactly one irreducible highest-weight module VA of the
affine Lie algebra o, with the highest weight X. We will call Vj
= VWP =0 1, 1, fundamental modules, and Vo = V ,, the
basic module.

2. Construction of Spinor Representations. We begin with
the classical construction of spinor representations of orthogonal
Lie algebras 6(n) (see, e.g., ref. 1). Let C(n) denote a Clifford
algebra of dimension 2n over C; i.e., C(n) is an associative al-
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gebra with unit 1 generated by the elements es, i = 1, n,
satisfying the relations

fej,ejj = ejej + eje1 = -26ij,= 1, 2...In. [2.1]
The Clifford algebra has a natural Z2-grading C(n) = CO(n)
* C'(n), in which CO(n) is a subalgebra of C(n) spanned by the
products of an even number of elements ej, i = 1, . . ., n. Let
n = 21 + 1. We recall the construction of a simple C(21 + 1)
module, which we denote by V(l). Let us introduce
b7= I (ie+ e7+1),b+ = (i -er-er+), r= . 1, [2.2]
and let us denote by e the generator e21+ 1. Then by the defi-
nition

[2.3]
in which the sum is taken by all the sets I < r1< ... < rk < 1,
including the empty set. The action of C(21 + 1) can be defined
from the conditions

brvo=, =1,... ,levo=ivo. [2.4]
According to physical terminology we call vo E V(l) the vac-
uum vector and the action of the elements b+, br, r = 1. 1,
the creation and annihilation operators, respectively.
The module V(l) has a natural Z2-grading V(l) = V0(l) G

V1(l) compatible with 72-grading of the Clifford algebra C(21
+ 1), V0(l) defined by Eq. 2.3 with even k, V1(l) with odd k.

Let us define now Lie bracket in C(21 + 1) as usual
[X1,X2] = XiX2 - X2X, X1,X2 E C(21 + 1), [2.5]

and let e denote the vector space spanned by the es, i = 1, ....
21 + 1. Then the vector space spanned by the elements XiX2, in
which X1,X2 E e and Ixl,X2j = 0, provided with the Lie bracket
2.5, is isomorphic to the simple Lie algebra o(21 + 1), and o(21
+ 1) 9 e is isomorphic to o(21 + 2). We fix a subalgebra o(21) c
o(21 + 1) generated by products of the elements es, i = 1, ....
21. The o(21 + 1) action in V(l) is called a spinor representation
and is irreducible. Its restriction to o(21) is decomposed into two
irreducible components acting in V0(l) and V'(l) (see ref. 1).
Now we go over to the infinite-dimensional case, which has

many common features with the classical case described above.
Let C(Zn) denote an infinite-dimensional Clifford algebra
generated by elements e (m), i = 1, . . ., n, m e Z, in which Z
denotes either 2Zor 2Z+ 1, satisfying the relations

Jej(k),ej(m)j = ej(k)e1(m) + ej(m)ej(k)
=-2bfjSqkm,ij = 1, 2,... n;k,m e Z. [2.6]

Let n = 21. We define the simple C(Z21)-module, which we
denote by V(ZI), as follows. Let

br(m) = iXier(m) + er+I(m))A
b+(m) = j(Ie7(-m) - er+I(-m)), r = 1,.,m E Z. [2.7]
Then for these elements the only nonzero anticommutators
are

fb,(m),b+ (m)} = 1, r = 1, . ,m e Z. [2.8]
We call b + (m), m > 0, br(m), m < 0 creation operators and
b+ (m), m < 0, br(m), m 2 0 annihilation operators, in which
r = 1,...,1,em E Z. We define V(Z1) to be the free module
generated by the creation operators acting on the vacuum
vector vo. The action of C(Z21) is defined now by the condi-
tion

b+(m)vo=0,m <0,
br(mi)vo= 0,m>0, r=1,...,ImeZ. [2.9]

The module V(ZI), as in the classical case, has a natural Z2-

grading V(Z') = VO(ZI) e V'(Zl), defined in the same way.
Also the Lie bracket in C(Z21) is defined as before (see Eq.
2.5).

Let x = Eil aje1, aj e C. We denote by x(n) the element
,2!iaiei(n). Let X = XIX2 E o(21). Then we define

X(m) = E xi(k)x2(m- k),m e 2Z
keZ

[2.10]
This operator is well defined in V(Z1), because for every v e
V(ZI) only a finite number of terms in Eq. 2.10 does not annul
V.

PROPOSITION 2.11. Let XI, X2, X3 E o(21) and [X1, X2] = X3;
then [Xl(m), X2(n)] = X3(m + n) + m/2 bm,-n (X1,X2), m, n
e 2Z
Let us define now an operator D in V(ZI) by the formulas

Dvo = 0, [D,et(m)] = m-ei(m), m e Z. [2.12]
This implies immediately [D, X(m)] = m-X(m),m e 2Z, X e
o(21). Therefore, we have obtained a representation of 6(21) in
the spaces V(Zl), Z = 2Zor 2Z+ 1, in which X @ tm is repre-
sented by X(m) [2.10], X e o(21), d by D [2.12], and c by id/2.
Following the analogy with the classical case we call these two
representations spinor representations of 6(21).
The space V(Z') has been considered before but in physics

rather than in mathematics. It appears in the quantum field
theory as the space of states of I different fermions-e.g.,
quarks. Affine Lie algebras are also known in physics as current
algebras with nontrivial Schwinger terms. Ten years ago two
physicists, Bardakci and Halpern, in ref. 4 constructed a rep-
resentation of the subalgebra jl(l) of 6(21) in the space V((2Z
+ 1)1) (see formulas 3.1-3.11 in ref. 4). At that time the theory
of affine Lie algebras began to take its first steps.
We will now proceed to the spinor representations of the

affine Lie algebra 6(21 + 1). In the classical case the spinor
representations of o(21 + 1) and o(21) are defined in the same
space V(l), but in the affine case it is no longer so. We have to
extend our spaces V(ZI), described above.

Let C(Z) be an infinite-dimensional Clifford algebra gen-
erated by elements e(m), m e Z, with relations 2.6 (n = 1). We
call e(-m), m > 0 creation operations and e(m), m > 0 anni-
hilation operators, m E Z. As above we define V(Z+) and
provide it with Z-grading. Now the Clifford algebra C(Z2'+ 1)
_ C(Z21) @ C(Z) is represented in a natural way in the space
V(ZW) = V(ZW) @ V(Z+), in which @ denotes a Z2-graded tensor
product [e(O)vo = ivo as in 2.4].
One can construct the representation of 6(21 + 1) in the spaces

V(ZI), Z = 2Zor 2Z+ 1 if one repeats literally the construction
of the spinor representation 6(21), changing 21 to 21 + 1 and
V(ZW) to V(Zl). We call these two representations spinor rep-
resentations of 6(21 + 1).
Now we proceed to the third and last type of affine orthog-

onal Lie algebras: to the algebras 6(2)(21 + 2). We again have
to extend the 6(21 + 1)-module V(Zl) to obtain the represen-
tation of 6(2)(21 + 2). First we consider one remarkable corre-
spondence between irreducible representations of commutation
and anticommutation relations.

Let C(Z) = C(2) @ C(2Z+ 1); i.e., C(Z) is a Clifford al-
gebra with generators e(m), m e Z, satisfying the relation

fe(m),e(n)j = -26m,-n,M,n E Z. [2.13]
And let V(Z+) = V(2Z+) 0 V((2Z+ 1)+) be a C(Z)-module.
Then the following operators are well defined in V(Z+):

E(m) = A, e(k)e(m - k),m e 2Z+ 1,
keZ

and one can check that

[2.14]

[E(m),E(n)] = -2m3m,-n. [2.15]
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We will see in the next section that the representation of the Lie
algebra generated by E(m), m e 2Z + 1, is irreducible.
Sometimes 2.15 and 2.13 are called commutation and anti-
commutation relations. Therefore we obtain their irreducible
representations in the same space V(Z+)!
We are now in a position to construct spinor representations

of 6(2)(21 + 2). First we define the representation of the Clifford
algebra C(Z21@ Z) = C(Z2) @ C(Z) in the space V(Z1) = V(Z')
o V(Z+ ) as usual. Then for X = X1X2 E o(21 + 1) we define the
operator X(m), m e 2Z, by formula 2.10, and for X = x e e we
define the operator X(m), m e 2Z+ 1, as follows

X(m) = , x(k)e(m - k),m e 2Z+ 1,
ke Z

[2.16]

in which e(n), n e Z, are generators of C(Z). In particular, if
x = e e e, then X(m) = E(m) is defined by 2.14.
PROPOSITION 2.17. Let XI, X2, X3 e o(21 + 1) or e and

[X1,X2] = X3; then [XI(mI), X2(m2)] = X3(mI + m2) + '/2m1
6m1,-m2 (X1MX2), mi e 2Z iff Xi e o(21 + 1), mi e 2Z+ 1 iff
Xi e e; i = 1,2.
We define now the operator D in V(Z') as in 2.12. This

completes the construction of spinor representation of 6(2)(21
+ 2) in the spaces V(Z'), Z = 2Zor 2Z+ 1. As above X 0 tm is
represented by X(m), [2.10,2.16], d by D, c by id/2. Our next
task is to decompose the six spinor representation into irre-
ducible components.

3. Main Theorem and Character Formulas. First we note
that if the operator e(0) is defined in a spinor representation,
as we have in the cases V(Z'), V((2 Z)'), then the Z2-grading is
not preserved by the action of the affine orthogonal Lie algebra.
On the contrary, if e(0) is not defined there, as we have in the
cases V(Z1), V((2Z + 1)1), then the Z2-grading is preserved.
This follows immediately from the definitions 2.10 and 2.16
of the representations of these affine Lie algebras. We call the
subrepresentations in the even and odd components of V(ZI)
and V((2Z + 1) ) semispinor representations. The crucial point
of our construction is the irreducibility of three spinor and six
semispinor representations.
Here we will make note of two approaches. Detailed proofs

will appear elsewhere. The first one is based on the fact that the
associative algebra generated by spinor representation contains
with the sums 2.10 and 2.16 all the particular smmands as well,
which follows from the Kac construction of the Casimir oper-
ator for any affine Lie subalgebra of 6 (see ref. 3). The second
approach is based on the definition of action of the group Zi in
the space of the spinor representation. We show that Z1 and the
Heisenberg subalgebra (see ref. 2) generate the whole space of
the spinor representation. Then the fact that Z1 _ Q(BI) and
[Zl:Q(Di)] = 2, in which Q is the root lattice, implies the result
(the action of Q was defined in ref. 2).
One can calculate easily the highest weights of the irreducible

components, and we obtain
THEOREM 3.1. (i) Each of the spinor representations of 6(21)

in the spaces V((2Z)') and V((2Z+ 1)') is decomposed into two
irreducible components according to its Z2-grading. One has
V°((2Z+ 1)1) _ VO(Dfl)), V'((2Z+ 1)') V_1(D1),VN(21) _
VI(Dfl)), Vl((2Z)') _ V1_-(Df' ), and vo, x,,1(0)vo, vo, x.,1(0)voare,
respectively, highest-weight vectors.

(ii) The spinor representation of o(21 + 1) in the space V(2Z
+ 1)') is decomposed into two irreducible components ac-
cording to its Z2-grading, and is irreducible in the space
V((2Z)'). One has V°((2Z + 1)') _ Vo(B'l)), V'((Z + 1)') _
VI(Bil)), V((2Z)') _ VI(Bil)), and vo, x,1(0)vo, vo are, respec-
tively, highest-weight vectors.
- (iii) The spinot representations of 6(2)(21 + 2) in the spaces
V((2Z+ 1)') and V((27Z)') are irreducible. One has V((2Z+ 1)1)

Vo(Df|2)), V((22)') _ VI(DJ2+)). In each case vo is a highest-
weight vector.

Vo, V1, V1-1, and V1 denote the fundamental modules ac-
cording to numerations of the points of Dynkin diagrams given
in 1.6.

Let V be a 6-module, and let V = En<N Vn be a decompo-
sition into the eigenspaces of operator d with the eigenvalue n.
We will consider only such modules V that Vn = foj, for suffi-
ciently large n, and that dim Vn < + 0. Every Vn is decom-
posed into the direct sum of the subspaces Vn.A with respect to
b c o c 6, g e P(D1), in which P is the weight lattice. We de-
fine the character of V as a formal sum

ch V = (2, dim Vn z-eu)qn,
n<N seP

[3.2]

in which p dim Vn' ez is an element of the group algebra
C(P), for every n < N. Let us calculate at first the character of
V(Z+) in two ways, using the facts that V(Z+) is the irreducible
representation of anticommutation 2.13 and also of commu-
tation relations 2.15,

ao a~~~~~c

ch V(Z+) = II (1 +qn) = II (1-q2n-l)-l. [3.3]
n=1 n=1

We have obtained the famous identity (see ref. 5). On the other
hand, we can use this identity to prove the irreducibility of the
representation of commutation relations. One can also calculate
the characters of the spinor representations using the facts
that

[h,b+ (m)] = (h,er)b+ (m)
[h,bT(m)] = (h,-e7)br(m), [3.4]

in which h e ), r = 1, . . . 1, and +ie are short roots of R(Bg).
Therefore, we have

co I
ch V((2Z+ 1)1) = HIIr (1 + q2nleer)(1 + q2n-1e-cr)

n=1 r=1

[3.5]
and similarly the character formulas of other spinor represen-
tations. By Theorem 3.1 we obtain also the character formulas
for the fundamental representations of affine orthogonal Lie
algebras, corresponding to the endpoints of their Dynkin di-
agrams. On the other hand, if we know the character formulas
of the fundamental representations we can derive the state-
ments of the theorem. For example, it follows from the char-
acter formula for the basic representation of o(21) (see ref. 2)
that

ch Vo(Di')) + ch Vj(Di')) = II (1 - q2n)-l q1e t)e-
n=1

[3.6]
in which the sum is taken over all 'Y = n 1el +... + niel, nk &
Z, k = 1, . . . , 1. The equality of the right sides of Eqs. 3.5 and
3.6 follows from the Jacobi formula (see below). It implies
statement i of Theorem 3.1. The two other proofs of our theo-
rem mentioned above do not use the character formulas for the
fundamental representations.

At last we write down three more character formulas:

ch V(2Z+ 1) = rj (1 + q2n-lee)(1 + q2n-1e-e)(1 + qn)
n=1

= H (1 - qn- E eneqn2(= O(cq))
n=1 ne Z

ch V(22) = ee/2 HI (1 + q2n-2ee)(1 + q2ne-c)(1 + qn)
n=1

Mathematics: Frenkel
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co

= II (1- qn)-1 e(n+ 1/2)qn2-n(=01(t,q)). [3.7]n=1 neZ

These formulas follow from the isomorphism 6(2)(4) _ 6(3) and
formula of ref. 6 for basic representation of I(3).

ch V((2Z+ 1)2) = c(q) * 0O(ej,q)OO(e2,q)
= OO(l - C2,q2)0O(el + e2,q2)

+ q.O1(ei - e2,q2)01(el + e2,q2) [3.8]

in which c(q) = H l (1 + qn)-2. The last formula follows from
Theorem 3.1 i for I = 2, and the fact that the character of a
fundamental representation of 6(4) is equal to the product of
characters of fundamental representations of I(3).
The formulas of 3.7 are famous Jacobi formulas for 0-func-

tions (see, e.g., ref. 5) and the formula of 3.8 is an addition
formula in the theory of 0-function (see, e.g., ref. 5). Thus these
classical formulas of the last century have found their geo-
metrical interpretation in the isomorphism of two different
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realizations of the infinite-dimensional representations of affine
Lie algebras.*

I am grateful to H. C. Tze for consultations in physics.

* After this work was done and discussed at the Lie groups seminar at
Yale University, the author, in conversation with V. G. Kac, learned
that V. G. Kac and D. H. Peterson were working in a similar direction
and have obtained some results.
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